THE PROBLEM OF THERMAL CONDUCTIVITY FOR A
FINITE RATE OF HEAT PROPAGATION

V. V. Kharitonov UDC 536.21.083

A solution is given for the problem of heat propagation along semibounded and bounded rods
with a constant-power heat source, with and without consideration of the transfer of heat
from the side surface for a finite rate of heat propagation.

There are numerous solutions {1-3] for the problem relating to the propagation of heat in bodies or in
a system of bodies under various boundary conditions. As demonstrated in [4], in principle any such solu~
tion may be used to develop a method for the determination of the thermophysical characteristics of various
materials under the conditions of the nonsteady problem, which makes it possible to undertake an integrated
study. Common to this class of problems is the assumption that the rate of heat propagation is infinitely
large, as a consequence of which the basic heat-conduction equation is written as

g’]; = aV2T, (1)
av
instead of the more exact hyperbolic heat-conduction equation [2]
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which takes into consideration the finiteness of the rate of heat propagation.

Such an approach, at normal temperatures and pressures (for gases), is justified by the fact that un-
der these conditions the relaxation time 1, is on the order of 1079-10"!"" sec and, consequently, the effects
associated with the finiteness of the rate of heat propagation will not markedly affect the experimental re-
sults, because contemporary techniques are not up to the task of spotting these,

We find a rather unique situation in the region of low and superlow temperatures and great rarefac-
tion (for gases). Since the relaxation time 7 ~ A/U, with a change in temperature it varies as ~T™? [5],
while with a drop in pressure it varies as ~ p~1 [6]. Under these conditions the thermal diffusivity a re-
mains either constant (when A ~ T? and ¢ ~ T?) or it varies in proportion to T~2 (when A ~ T and ¢ ~ T9).

All of this leads to the fact that with a drop in temperature and pressure the second term in the left-
hand member of (2) becomes commensurate in terms of magnitude with the right-hand member. Conse~
quently, in solving heat-conduction problems in the region of low temperatures and pressures we must use
(2), whose particular solutions may serve as the basis for the development of a method of integrated deter-
mination of the thermophysical characteristics for various materials in the given range of parameter varia-.
tions.

Let us consider the problem of the heat conduction of a semibounded rod with a heat-insulated surface
in the case of a finite rate of heat propagation. The basic heat-conduction equation (2) is then written as
aT (x, ©) T T (x, T) — T (x, 1) ’
dr I oore Ox?
where we assume that 7, and a are independent of temperature. The boundary conditions of the problem
are
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g=—> (27;) = const, (4)
x=0

Ox
T (x, 0y = T (00, ©) = T, = const. (5)
Moreover, for (2) to be a transport equation and to satisfy the law for the conservation of energy, the
solution must satisfy the condition*
(ﬁ) ~0. 6)
0t /= k

We seek the solution through use of the Laplace transform. Applying the Laplace transform, we obtain
the solution in the following form:

T (x, T)—T0=0when1:<17d=xl/1;—r, . (7)
= t
— 5 DR
T (x, 1) — T, = aVa g, 2‘II(,(_V ! T..d) dt )
AV, 21,
Td
when T>1¢g

As we can see, the presence of a finite rate of heat propagation determines the existence of a fully
determined value for the delay time 74, and it is only on elapse of this time that the temperature of the
body begins to change at a given point.

When the surface of the rod is not heat~insulated and, bearing in mind the combined transfer of heat
by convection and radiation, according to [2], in terms of an arbitrary coefficient o = qpgpy + 0*(T), where
o*=cye is the reduced coefficient of radiation, and b(T) is some function dependent on the temperatures of the
rod and the medium, the basic equation (2) can be written as follows:

AT (x, 1) T (x, ) PT (x, 7) a
—_— = a -—_ T X T "T . (9)
ot T e ax? cyph 7% 5 =Tl
The boundary conditions (4)-(6) remain as before. The solution for (9) will have the form
T(x, ©)— Ty = Owhen 1< 14, (10)
T t .
. ___C]_ z —T_r (V1—4HTr tz___ )
T -1, =L/ e T (LI v F =T e (1)
Td

Here, as before, I,(z) is a zero-order Bessel function of imaginary argument. Comparing solutions (8) and
(10), we see that the latter differs only in the presence of the factor v1—4HT, in the argument of the inte-
grand. Since the argument must be a real number, we find the condition

H<

or T, <CT;/4, (12)
41,

and if this condition is satisfied we will have a nonsteady variation in the temperature of the rod as the
latter is heated. It should be noted that under ordinary conditions, because of the small magnitude of 7,
this condition, as a rule, is always satisfied.

Having calculated the approximate values of the integrals in (8) and (11) and assuming x = 0, for
large time intervals (r — =) we can find that in the absence of heat transfer

(T (0, ) — Tylpon > —2 9V 5
VoI A

which is in agreement with the solution from (2], while in the case of a surface that is not heat-insulated

(0.0~ Tyhow > V55 13)

which is in good agreement, as follows from the author’s data, with an analogous solution but in the assump-
tion of an infinite rate of heat propagation. From this we draw the second conclusion: the effect of a finite
rate of heat propagation on the temperature distribution along a rod makes itself felt only during the initial
period of the nonsteady segment from 7= 7gto v = 7*. The magnitude of this interval depends on the geo-
metric dimensions and thermophysical properties of the specimen, as well as on the intensity with which
heat transfer takes place between the specimen and the ambient medium. However, the magnitude of the
delay time Tq 18 independent of the heat-transfer intensity.

*As demonstrated to the author by A. V. Luikov and T. L. Perel'man.

512



When solving the problem of heat propagation in a bounded rod (of length {), to the existing boundary
conditions (4)-(6) we should add the condition describing the exchange of heat with the ambient medium at
the end of the rod, because now in the place of (5) we should write

T(x, 0) =T, 0) =T, = const. 6"

Assuming for the sake of simplicity that the heat transfer at the end of the rod is small in comparison with
the heat transfer at the side surface, a condition which is well satisfied for thin long specimens (Qtace
~ hQace/l), we write the boundary conditions in the form

T(l, ©) =Ty = const

(ﬂ) —o. (14)
Ox

or

The solution in transformations of the basic equation (12) for conditions (4)-(6) and (14) will be
gexp(—kx) 1+ exp[— 2kl —x)]

TL(x, 8) — Tols = (15)
L) =T Ehs 1 — exp (— 2kl
Expanding
e exp (— 2&knl
l—exp(—.?kl) {_2 P )
and limiting ourselves to the first term of the series, we find
Tr(x, 8) — Tyls = hz {exp (— kx) + exp [— (21 — x) &] + exp[— (20 + x) k] + exp [— (4 — x) &}, (16)
S
where
b l/trs2 +s+H
= .
Reconverting, we find
T (x, ©) — Ty = O when © < 14, (17)
and
— g Tt
-4 a r my VYV 1T—4Ht, V £—12 )
T 1) —Ty= -= ;
(6 1) —Ty= - . Ej e 10( = | dt (18)
=1 td .
when T > 14;.
For the case of a heat-insulated surface, instead of (18) we have
— At _
D) e “wo(" =) 4 (19)
7\: T].' E o 21
i=1 T T

In (18) and (19) the values of Tqi are, respectively,

B R~ R
A =X wak sz—(l—-x)]/ = s = (20 + x) 7

T
w=—-9]/ =
As we can see, the existence of a surface bounding the length of the rod leads to the appearance of

temperature waves, and the change in temperature at a given point is determined by the sum of the solution
for an infinite rod and the additional terms characterizing the limited extent of the specimen.

NOTATION
a is the coefficient of thermal diffusivity;
o is the coefficient of heat transfer;
Cp is the specific heat capacity;
p is the density;
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is the form parameter;

is the cross-~sectional area;

is the perimeter;

is the specific heat flow;

is the coefficient of thermal conductivity;
is the temperature;

is the temperature of the medium;

is the time;

is an instantaneous coordinate;

is the relaxation time;

is the delay time;

is the mean free path;

is the thermal velocity of the particles;
is the pressure;

T| = cpph/a is the time constant for the process;
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is the length;
is the quantity of heat.
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